If it's not what You are looking for type in the equation solver your own equation and let us solve it.
l^2-6=43
We move all terms to the left:
l^2-6-(43)=0
We add all the numbers together, and all the variables
l^2-49=0
a = 1; b = 0; c = -49;
Δ = b2-4ac
Δ = 02-4·1·(-49)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$l_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$l_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$l_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14}{2*1}=\frac{-14}{2} =-7 $$l_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14}{2*1}=\frac{14}{2} =7 $
| 0.4=10x= | | 16.04+0.12x=16.54+0.08x | | 0.4=10x | | 15y–20=-80 | | 1-3m=7-3m | | 65x+128=180 | | 8x+10+40=16x-6 | | 4x+8=9+2x | | 4x+11x-2=3(5x+6) | | 3x^2+6x-1=170 | | 114=11x-7 | | −2x−6=14x=-10 | | 1-3v=-2v+1 | | 45=13+8h | | -7-7n=n-7 | | 3x2+6x-1=170 | | x/2-2=x/6-2/3 | | 8(x-3)7=2x(4-17) | | 4x+62=9 | | 4c−–1=21 | | 155(365x)=1840 | | 5x-2-3+4x-10=3(3x-4) | | X=2,y=32 | | -5x+5=13-3x | | X=7,y=9 | | 0.5(x+50)=2x+97 | | f(12)=2(12)+10 | | X=1,y=64 | | 40+(x+34)+2x=180 | | 3k–1=7k+2 | | X=4,y=16 | | −0.5=x+3.4 |